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A B S T R A C T

Sequential recommender systems (SRSs) aim to suggest next item for a user based on her historical interaction
sequences. Recently, many research efforts have been devoted to attenuate the influence of noisy items in
sequences by either assigning them with lower attention weights or discarding them directly. The major
limitation of these methods is that the former would still prone to overfit noisy items while the latter may
overlook informative items. To the end, in this paper, we propose a novel model named Multi-level Sequence
Denoising with Cross-signal Contrastive Learning (MSDCCL) for sequential recommendation. To be specific,
we first introduce a target-aware user interest extractor to simultaneously capture users’ long and short term
interest with the guidance of target items. Then, we develop a multi-level sequence denoising module to
alleviate the impact of noisy items by employing both soft and hard signal denoising strategies. Additionally,
we extend existing curriculum learning by simulating the learning pattern of human beings. It is worth noting
that our proposed model can be seamlessly integrated with a majority of existing recommendation models
and significantly boost their effectiveness. Experimental studies on five public datasets are conducted and the
results demonstrate that the proposed MSDCCL is superior to the state-of-the-art baselines. The source code is
publicly available at https://github.com/lalunex/MSDCCL/tree/main.
1. Introduction

Sequential Recommender Systems (SRS) have emerged as a chal-
lenging research field and play a critical role in present e-commerce
and social media platforms (Chen, Liu, Li, McAuley, & Xiong, 2023;
Wang, Liu, Wang, Wang, & Li, 2023; Xie et al., 2022), with the aim
of recommending the next item based on users’ historical sequences.
The core problem of SRS is how to effectively capture the sequen-
tial patterns of historical user behaviors. To this end, many kinds
of methods based on deep neural networks have been proposed. For
example, some works propose to leverage recurrent neural networks
(RNNs) (Hidasi, Karatzoglou, Baltrunas, & Tikk, 2016; Orvieto et al.,
2023), convolutional neural networks (CNNs) (Sudarsan & Polash,
2023; Tang & Wang, 2018), Transformer (Ma et al., 2023), and Graph
Neural Networks (GNNs) (Hao et al., 2023) to model the sequential
patterns. Despite these methods have achieved promising performance,
they have a major limitation that user sequences may contain some
noisy items (e.g., misclick (Tolomei, Lalmas, Farahat, & Haines, 2019)
and malicious false interactions (Zhang, Li, Ding, & Gao, 2020), which
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undoubtedly pose significant challenges for extracting user preference
and making recommendations.

In recent years, many research efforts have been devoted to handle
the noisy issue in users’ historical sequences. One research line is to
mitigate the impact of noise within sequences in a ‘‘soft’’ manner by
utilizing the attention mechanism (Li et al., 2021; Li, Wang, & McAuley,
2020) or filtering algorithms (Zhou, Yu, Zhao, & Wen, 2022). These
methods attempt to reduce the influence of noisy items by assigning
them lower attention weights when learning representations of users’
historical sequences. DSAN (Yuan, Song, Sun, Wang, & Zhao, 2021)
introduces a virtual target item and takes it as the query vector for
attention weight assignment. AC-TSR (Zhou et al., 2023) introduces
two calibrators, i.e., a spatial calibrator and an adversarial calibrator, to
assign the attention weights via utilizing spatial relationships and each
item’s contribution for prediction. FMLP-Rec (Zhou et al., 2022) applies
fast fourier transform to convert items into the frequency domain
and utilize a low-pass filter to alleviate noisy items in the frequency
domain. Although these research efforts have achieved encouraging
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results, they still suffer from noisy items in sequences (Zhang et al.,
2022). Another research line proposes to explicitly remove noisy item
in a ‘‘hard’’ manner (Sun, Wang, Sun, & Yang, 2021; Zhang et al.,
2022). BERD (Sun et al., 2021) proposes to handle unreliable items
in sequences by modeling their corresponding losses and uncertainties
via a Gaussian distribution. HSD (Zhang et al., 2022) combines two
levels of signals, i.e., the user-level signal and the sequence-level signal,
to identify inherent noisy items in sequences. One major limitation of
these methods is that they would ignore relevant items in sequences
during the denoising process, which will lead to inferior performance.

To address the issues mentioned above, we propose a novel method
called Multi-level Sequence Denoising with Cross-signal Contrastive
Learning (MSDCCL) for sequential recommendation. The main idea
of our model is to handle noisy items in user interaction sequences
by simultaneously leveraging both ‘‘soft’’ and ‘‘hard’’ denoising strate-
gies, where each of them mutually guide the learning of the other.
Specifically, we develop a soft- and hard-level sequence denoising
module which consists of two sub-modules, i.e., a soft-level denoising
sub-module and a hard-level denoising sub-module. The former allevi-
ates noisy items by assigning lower attention weights, and the latter
eliminates irrelevant items identified by using a Gumbel-Softmax func-
tion (Chaudhary & Singh, 2023; Wang, Jia, Guo & Liu, 2023). It is worth
noting that we also introduce a cross-signal contrastive learning layer
to allow guidance informative exchange between the two sub-modules.
To the best of our knowledge, this is the first model that can com-
prehensively explore the benefits of both ‘‘soft’’ and ‘‘hard’’ denoising
strategies for sequential recommendation. In addition, we incorporate
a target-aware user interest extractor to model long- and short-term
user interests, where a transformer sub-module is utilized to capture
the long-term user interest and a target-aware convolutional sequence
embedding sub-module is developed to learn effective short-term user
interest. At last, we extend existing curriculum learning (Wang, Pan,
et al., 2023; Xu, Yuan, Mo, Song, & Li, 2024) by utilizing a S-shape
function to simulate the learning process of human beings. To be
specific, we separate ‘‘difficult’’ training samples into low- and high-
speed learning zones, and train our model with fewer samples in the
low-speed learning zone and more samples in the high-speed learning
zone.

Extensive experiments have been conducted to examine the per-
formance of our proposed model MSDCCL on five public benchmark
datasets, i.e., ML-100k, Beauty, Sports, Yelp and ML-1M. The results
demonstrate that MSDCCL significantly outperforms the state-of-the-
art methods. For example, the relative performance improvements of
MSDCCL over the two best performing baselines (i.e., HSD+BERT4Rec
and AC-BERT4Rec) are 100.00% and 233.96% in terms of HR@5 on the
dataset ML-100k, respectively. We further conduct an ablation study
to verify the contribution of each component in our model, and the
results show that removing each of them will lead to a considerable
performance degradation. At last, we investigate the influence of the
S-shape curriculum learning, and the results suggest that MSDCCL
equipped with S-shape increment performs better than its counterpart
equipped with linear increment. We summarize the main contributions
of this paper as follows:

• We propose a novel denoising model for the task of sequential
recommendation, which simultaneously attenuates the denoising
issue in the sequence via both soft and hard denoising strategies.

• We design a target-aware user interest extractor to effectively
capture both user long-term and short-term interest.

• We extend existing curriculum learning by simulating the learn-
ing pattern of human beings.

• Extensive experiments have been conducted on five widely used
datasets, including ML-100k, ML-1M, Beauty, Sports and Yelp.
The results show that the proposed MSDCCL is superior to all

state-of-the-art baseline methods.

2 
The rest of the paper is organized as follows. Section 2 gives the
related work. Section 3 provides the preliminaries. We introduce the
details of our proposed approach MSDCCL in Section 4, and present
the experimental results and analysis in Section 5. Section 6 draws the
conclusions of this paper.

2. Related work

2.1. Sequential recommendation

Sequential recommendation aims at extracting a user’s interest from
her historical interactions and then predicting the next item that she
is most interested in. Some pioneer works (Rendle, Freudenthaler, &
Schmidt-Thieme, 2010) utilize Markov Chains (MCs) to capture dy-
namic changes in user interest. With the tremendous success of deep
learning, in recent years, researchers resort to developing various deep
neural networks based methods for sequential recommendation and
have achieved encouraging progress. Hidasi et al. (2016) first propose
to employ recurrent neural networks (RNNs) for sequential recommen-
dation and introduce a novel ranking loss function for model training.
Liu et al. (2016) model user sequential behaviors by leveraging the
contextual information. They extend the conventional RNN models by
introducing variable input matrix and transition matrix. Tang et al.
(2018) utilize convolutional filters to extract sequential patterns and
develop a convolutional sequence embedding recommendation model
which assigns larger impact to more recent items. Yuan et al. (2019)
extract both short and long-range item dependency to learn high-
level representation, and increase the receptive fields by employing a
stack of holed convolutional layers. Wu et al. (2019) model session
sequences as graph-structured data and apply graph neural networks
(GNNs) to capture complex transition patterns between items. Wang
et al. (2020) further consider both the transition information and the
corresponding temporal dynamics of items to learn accurate represen-
tations. They utilize external knowledge graph to capture the relation
between items, and introduce a dynamic time kernel function to merge
these representations.

2.2. Contrastive learning

Contrastive Learning (CL) (Huang, Wang, He, & Yin, 2022) has
been successfully used in the field of recommendation, which attempts
to extract useful self-supervised signals from user behavior sequences.
Many efforts have been conducted to apply contrastive learning to im-
prove the recommendation performance via augmenting the user-item
bipartite graph. For example, Wu et al. (2021) utilize dropout-based
structure perturbation to augment the user-item bipartite graph, and
maximize the representation consistency between same nodes in differ-
ent augmented graphs. Different to the dropout-based augmentation,
Yu et al. (2022) propose a noise-based augmentation by constructing
contrastive views via incorporating different random noises to the
original representations. They aim to regularize the embedding space
towards a uniform distribution.

Some other works attempt to apply contrastive learning to yield bet-
ter performance for sequential recommendation. For example, Xia et al.
(2021) introduce the hypergraph representation learning to alleviate
the sparse issue of the session data, and provide strong self-supervision
signals for recommendation. Qiu et al. (2021) develop a multi-instance
noise contrastive estimation, which extends the noise contrastive esti-
mation from a single positive sample to a multi-instance variant. Xie
et al. (2022) employ stochastic data augmentation to transform each
user interaction sequence into two correlated views of the sequence,
and explore contrastive learning on user interaction sequences to boost
sequential recommendation performance. Qiu et al. (2022) incorporate
the target item to provide supervision signals for positive sampling, and
design a contrastive regularization to improve the representation distri-

bution. Chen et al. (2022) leverage unlabeled user behavior sequences
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to capture users’ intent distribution, and propose an intent contrastive
learning module to maintain the agreement between a sequence and
its corresponding intent. To reduce the false positive and false negative
samples, Wang et al. (2022) employ explanation methods to derive
positive and negative sequences based the importance of items in a
user sequence. Duan et al. (2023) leverage the same user’s short-term
and long-term interaction sequences as positive samples, and other
randomly selected interaction sequences as negative samples. Zhu et al.
(2024) first learn a user’s low-level and high-level preference interest,
and then take the corresponding preference interest between them as
positive samples, and others as negative samples.

The key difference between our method and existing models is
that we propose a novel cross-signal (i.e., the generated soft and hard
supervision signals) to generate the positive and negative samples.
Specifically, we first utilize the generated hard supervision signals to
identify noisy and relevant items. Then, we take these pairs between
the user interest representation (i.e., generated via the soft supervision
signals) and the noisy items as negative samples, and pairs between it
and the relevant items as positive samples.

2.3. Denoising methods

Due to the existence of noise within users’ historical interactions
(Quan et al., 2023; Wang, Gao, et al., 2023; Zhang, Chen, Zhao, Han,
& Li, 2023), e.g., accidental interactions, a surge of works have been
proposed to deal with noisy items in sequences. These methods can be
roughly grouped into two categories, i.e., soft-denoising category and
hard-denoising category. The methods in the soft-denoising category
mainly depend the self-attention mechanism, which attempts to assign
lower attention weights to noisy items in order to alleviate their in-
fluence. Li et al. (2020) consider the influence of both the position of
each item as well as the time interval between items on prediction and
propose a time-aware self-attention mechanism for recommendation.
Luo et al. (2020) first identify neighborhood sessions of the current
session and then utilize the self-attention network to assign weights to
collaborative items. Yuan et al. (2021) design a self-attention network
to obtain target embedding and apply a vanilla attention network to
estimate the importance of items in sequences. An adaptively sparse
transformation function is then incorporated to eliminate the influence
of noisy items in sequences. Zhou et al. (2023) improve the estimation
of attention weights for items in a sequence by developing a spatial
calibrator and an adversarial calibrator. The former is designed to
adjust attention weights based on spatial information among items,
and the latter is used to modify attention weights by exploring the
contribution of each item. However, these methods would still assign
attention weights to less relevant or irrelevant items in sequences,
leading to sub-optimal recommendation performance.

The methods in the hard-denoising category aim to explicitly drop
noisy items in sequences. Tong et al. (2021) employ reinforcement
learning to determine the relevance of each item in sequences. They
investigate sequential patterns for the policy learning process and for-
mulate the denoising problem as a Markov Decision Process. Chen et al.
(2022) propose a denoising strategy by getting rid of noisy attentions.
They introduce a trainable binary mask in each self-attention layer
which assigns zero attention scores to noisy items. This method remains
the architectures of transformers, while changing the attention distri-
butions. Zhang et al. (2022) propose a hierarchical sequence denoising
method by introducing two types of signals, i.e., user-level intent sig-
nals and sequence-level context signals, to identify inconsistency items
in sequences. Despite the promising performance achieved by these
methods, identifying irrelevant items in sequences is still challenging
and relevant information would be discarded during the denoising
process. Different with previous works, we propose to combine both
soft and hard denoising strategies in a unified model, where the two

denoising strategies will guide the denoising process of each other.

3 
3. Preliminaries

In our denoising model, we have a collection of users and items,
denoted as  and  , correspondingly, where 𝑢 ∈  stands for a user
nd 𝑣 ∈  stands for an item. The quantity of users and items in the

collection is indicated as | | and ||, respectively. Our model takes
he collection of users’ historical interactions  = {𝑆𝑢1 , 𝑆𝑢2 ,… , 𝑆𝑢

| |}
s input. For a particular user, her interaction sequence is represented
s 𝑆 = [𝑠1, 𝑠2,… , 𝑠𝑛], where 𝑛 indicates its length, and 𝑠𝑖 denotes the 𝑖-th
tem that has been interacted. The aim of sequential recommendation
s to predict the next item that the user is most likely to engage with
t the (𝑛 + 1)th step, depicted as 𝑝(𝑠𝑛+1|𝑠1∶𝑛).

. Methodology

The architecture of our proposed model MSDCCL is illustrated in
ig. 1. It mainly consists of four components: embedding layer, target-
ware user interest extractor, soft- and hard-level sequence denoising,
nd prediction layer.

.1. Embedding layer

In the embedding layer, 𝑴𝐼 ∈ R||×𝑑 denotes a dense, lower-
imensional item embedding matrix, where 𝑑 represents the size of
mbedding vectors. The corresponding item embedding matrix 𝑯 ∈
𝑛×𝑑 for a user’s history interaction sequence 𝑆 can be obtained by per-

orming a look-up operation on 𝑴𝐼 . To capture the temporal influence
f each item in 𝑆, we also incorporate a learnable position embedding
atrix 𝑷 ∈ R𝑛×𝑑 . Therefore, for an item 𝑠𝑖 in 𝑆, we have 𝒉𝑖 ∈ 𝑯 and
𝑖 ∈ 𝑷 to represent its item embedding and corresponding position
mbedding, respectively.

.2. Target-aware user interest extractor

User historical interactions reflect the evolution of her interests,
eading to different interests between long- and short-term interac-
ions (Lv, Zhuang, Luo, Li, & Zha, 2020; Zheng, Liu, Li, & Wu, 2021).
o represent the long-term user interest, we utilize a transformer
ncoder to model the whole historical interactions. Previous research
as emphasized the importance of modeling the short-term user interest
ased on her recent interactions. In this regard, it is common to utilize
he last 𝑚 items in the historical interactions to capture the short-
erm user interest (Liu, Zeng, Mokhosi, & Zhang, 2018; Zheng et al.,
022). In contrast, some researches employ the next item to reflect
he short-term user interest (Lin et al., 2022; Zhang et al., 2022). Due
o potential shifts of the short-term user interest, we integrate those
wo approaches during the training phase to improve its stability. As
he target item remains unobservable during the validation and testing
hases, we exclusively use the last 𝑚 items in the sequence to model the
hort-term user interest. After acquiring the representations of user’s
ong- and short-term interest, we utilize a feedforward neural network
o fuse them into a comprehensive representation of user interest.

.2.1. Long-term user interests
Inspired by the works of Xu, Peng, et al. (2024), Zhou et al. (2020),

ur model incorporates a transformer encoder to encode users’ histori-
al interactions. It consists of multiple identical layers that comprise of
ulti-head self-attention and feed-forward neural networks, which can

e formulated as follows:
𝑙 = Transformer

(

𝑯 𝑙−1 + 𝑷
)

, ∀𝑙 ∈ [1,… , 𝐿], (1)

here 𝑯 and 𝑷 represent the item embedding matrix and the corre-
ponding position embedding matrix, respectively. To obtain the final
utput of the transformer encoder, we retrieve the hidden representa-
ion matrix 𝑯𝐿 =

[

𝒉𝐿1 ,𝒉
𝐿
2 ,… ,𝒉𝐿𝑛

]

∈ R𝑛×𝑑 from the last layer 𝐿. For
simplicity, we utilize the hidden representation of last item 𝒉𝐿𝑛 as the

𝑢 𝑑
long-term user interest 𝒆𝑙 ∈ R .



X. Zhu et al. Neural Networks 179 (2024) 106480 
Fig. 1. The architecture of our proposed model MSDCCL.
Fig. 2. Target-aware convolutional sequence embedding.
4.2.2. Short-term user interests
Based on previous discussions, we propose to integrate both the

last 𝑚 items and the next item to learn a high quality short-term user
interest representation. This integration entails jointly modeling the
actual target item and the last 𝑚 items, which is formulated as follows:

𝑯 ′ = Truncate(𝑯 , 𝑚), (2)

𝒄𝑘ℎ = Conv𝑘ℎ
([

𝑯 ′ ∥ 𝒉𝑛+1
]

,𝑭 𝑘
ℎ
)

,∀𝑘 ∈ [1,… , 𝑧(𝑚 + 1)], (3)

𝒄𝑘𝑣 = Conv𝑘𝑣
([

𝑯 ′ ∥ 𝒉𝑛+1
]

,𝑭 𝑘
𝑣
)

,∀𝑘 ∈
[

1,… , 𝑧′
]

, (4)

where Truncate (⋅) is a function which truncates the last 𝑚 items from
the sequence 𝑆, 𝒉𝑛+1 is the target item representation, and ∥ denotes
the concatenation operation. It is important to note that 𝒄𝑘ℎ and 𝒄𝑘𝑣 are
obtained by applying convolution with a stride of 1, where 𝑭 𝑘

ℎ and
𝑭 𝑘

𝑣 stand the horizontal and vertical convolution kernel, respectively.
Meanwhile, 𝑧 and 𝑧′ represent the number of convolution kernels of
the same shape. The specific convolution process is shown in Fig. 2.
Subsequently, we fuse 𝒄ℎ ∈ R𝑧(𝑚+1) and 𝒄𝑣 ∈ R𝑧′𝑑 to obtain the
short-term user interest as follows:

𝒄ℎ = MaxPooling
(

ReLU
(

𝒄1ℎ, 𝒄
2
ℎ,… , 𝒄𝑧(𝑚+1)ℎ

))

, (5)

𝒄𝑣 =
[

𝒄1𝑣 ∥ 𝒄2𝑣‖⋯ ‖𝒄𝑧′𝑣
]

, (6)

𝒆𝑢 = MLP
([

𝒄 ∥ 𝒄
])

. (7)
𝑠 ℎ 𝑣

4 
4.2.3. Interests fusion
After obtaining the long- and short-term interests of user, we employ

a feedforward network to combine the two interest representations,
yielding the final user interest 𝒆𝑢 ∈ R𝑑 , which is formulated as follows:

𝒆𝑢 =
(

ReLU
(

𝒆𝑢𝑠𝑾 1 + 𝒆𝑢𝑙𝑾 1
))

𝑾 2 + 𝒃1 (8)

where 𝑾 1,𝑾 2 ∈ R𝑑×𝑑 and 𝒃1 ∈ R𝑑 denote the trainable parameters.

4.3. Soft- and hard-level sequence denoising

4.3.1. User-item correlation generator
Users’ historical interaction sequences inevitably contain noise

(Tolomei et al., 2019) and in some cases, even malicious false interac-
tions (Zhang et al., 2020). The noise within interaction sequences can
potentially mislead the model, resulting in sub-optimal user representa-
tions. To identify noisy items in a sequence 𝑆, one solution is to employ
the attention mechanism as a discriminator and use 𝒆𝑢 as a query to
assign different weights 𝜶𝑖 ∈ R2 to distinct items in 𝑆. It is worth
noting that the first and second dimensions of 𝜶𝑖 respectively denote
the relevance and irrelevance of item 𝑠𝑖 to user interest 𝒆𝑢, which can
be formulated as follows:

𝒉′𝑖 = 𝒉𝑖𝑾 3, (9)

𝜶 = 𝜎
([

𝒉′‖𝒆𝑢‖𝒉′ − 𝒆𝑢 ∥ 𝒉′ ⊙ 𝒆𝑢
]

𝑾
)

, (10)
𝑖 𝑖 𝑖 𝑖 4
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where 𝑾 3 ∈ R𝑑×𝑑 and 𝑾 4 ∈ R4𝑑×2 are the trainable parametric ma-
rices, ⊙ and 𝜎 (⋅) represent the element-wise product and the sigmoid
ctivation function, respectively.

.3.2. Soft-level denoising
Similar to previous studies (Li et al., 2020; Xu et al., 2019), we

ntroduce a soft-level denoising module by carrying out a soft signal
enoising layer on the sequence 𝑆 based on the attention mechanism,
hich is followed by a recommender layer.
Weighted with Soft Signal Denoising. We employ the first dimen-

ion of 𝜶𝑖 ∈ R2 to represent the relevance between the 𝑖th item and
he user interest, and utilize the normalized weights {𝛼0𝑖 }

𝑛
𝑖=1 to assign

eights to items within the sequence. After that, we obtain the new
tem representation 𝒉̂𝑖 ∈ R𝑑 :

0
𝑖 =

exp
(

𝛼0𝑖
)

∑𝑛
𝑗=1 exp

(

𝛼0𝑗
) , (11)

𝒉̂𝑖 = 𝛼0𝑖 𝒉𝑖𝑾 5, (12)

where 𝑾 5 ∈ R𝑑×𝑑 is a trainable parametric matrix, and 𝑯̂ =
𝒉̂1, 𝒉̂2,… , 𝒉̂𝑛

]

∈ R𝑛×𝑑 is the soft denoised sequence representation.
Recommender. The recommender serves as a sequence encoder,

hich can be any mainstream sequence recommendation models. It
akes 𝑯̂ as input and generates the user representation 𝒆̂𝑢, which can
e formulated as follows:

̂𝑢 = F
(

𝑯̂
)

, (13)

here F (⋅) denotes a recommender utilized for sequence representation
earning, e.g., BERT4Rec (Sun et al., 2019), SASRec (Kang & McAuley,
018), 𝑒𝑡𝑐.

.3.3. Hard-level denoising
We can predict the next item by solely relying on 𝒆̂𝑢. However,

he influence of noisy items cannot be entirely eliminated based on
he soft-level denoising since it still assigns some weights to them and
eading to sub-optimal recommendation performance. To deal with this
ssue, we propose to further incorporate a hard-level denoising module
o improve the learning of user representation. To achieve this, we
ntroduce contrastive learning to enhance the robustness of the user in-
erest representation. Nevertheless, the generated hard signals, serving
s pseudo-labels, are not fully accurate in detecting noise items due to
here is no supervised signals. To address this challenge, we employ the
ayesian Personalized Ranking (BPR) loss (Qin, Ju, Wu, Luo, & Zhang,
024; Rendle, Freudenthaler, Gantner, & Schmidt-Thieme, 2009) to
reserve the quality of the generated hard signals.
Gumbel-softmax. Since 𝜶𝑖 ∈ R2 serves as a discriminative metric to

etermine whether an item is noise or not, it can be applied to guide the
eneration of the hard signals. Due to the need to obtain a binary value
nd allow gradient backpropagation, we opt for the Gumbel-softmax
unction to satisfy the requirement, which can be formulated as follows:

𝜶̃𝑖 = Gumbel-softmax
(

𝜶𝑖, 𝜏
)

, (14)

𝛼̃1𝑖 =
exp

(

log
(

𝛼1𝑖
)

+ 𝑔1
)

∕𝜏
∑1

𝑗=0 exp
(

log
(

𝛼𝑗𝑖
)

+ 𝑔𝑗
)

∕𝜏
, (15)

here 𝑔𝑗 represents a perturbation sampled from the Gumbel distribu-
ion, used to enhance the model’s robustness. Additionally, 𝜏 > 0 serves
s a temperature parameter that regulates the selection distribution.
hen 𝜏 → 0, 𝜶̃𝑖 approximates a one-hot vector. When 𝜏 → ∞, 𝜶̃𝑖

pproximates a uniform distribution. When 𝜏 → 1, the Gumbel-softmax
unction gradually converges to the standard softmax function. Note
hat we leverage the second dimension of 𝜶̃𝑖 =

[

𝛼̃0𝑖 , 𝛼̃
1
𝑖
]

∈ [0, 1] as
he hard signal because it denotes the irrelevance between the item
epresentation and the user interest representation. Specifically, if 𝛼̃1𝑖 =

, it means that 𝑠𝑖 is a noisy item, and otherwise 𝑠𝑖 is a relevant item.

5 
Dual Loss with Hard Signal Denoising. In this component, we
ocus on the task of implementing hard denoising for sequences. It
nitially uses the generated hard signals {𝛼̃1𝑖 }

𝑛
𝑖=1 to identify noisy items

ithin the sequence. Subsequently, we propose a novel cross-signal
ontrastive learning to enhance the user interest representation 𝒆̂𝑢,
hich is generated via the soft denoising. In Fig. 1(c), 𝒉2 corresponds to
noisy item, while 𝒉1 corresponds to a relevant item. The contrastive

earning objective is to maximize the correlation between positive
ample pairs

(

𝒆̂𝑢,𝒉1
)

and minimize the correlation between negative
ample pairs

(

𝒆̂𝑢,𝒉2
)

:

𝑆𝐶𝐿 = − 1
|𝑆+

|

∑

𝑠𝑖∈𝑆+
log

exp
(

sim
(

𝒆𝑢,𝒉𝑖
)

∕𝜏
)

∑

𝑠𝑗∈𝑆 exp
(

sim
(

𝒆𝑢,𝒉𝑗
)

∕𝜏
) (16)

where sim (⋅) is a cosine similarity function, 𝜏 represents a temperature
parameter, and |𝑆+

| represents the number of positive samples in the
sequence 𝑆.

However, without supervised signals to ascertain whether items in
the sequence are noise, the reliability of the generated hard signals
{𝛼̃1𝑖 }

𝑛
𝑖=1 cannot be determined. To tackle this, we use the hard signals

to explicit eliminate ‘‘noise’’ items from the original historical inter-
actions, yielding a new sequence representation 𝑮 =

[

𝒈1, 𝒈2,… , 𝒈𝑡
]

∈
R𝑡×𝑑 , 𝑡 ≤ 𝑛. Next, we employ a transformer encoder to encode 𝑮 in
order to acquire the hard denoised user representation 𝒆̄𝑢. The process
can be formalized as follows:

𝑮 = Reorganize
((

𝟏 − 𝜶̃1) ⋅𝑯
)

, (17)

𝒆̄𝑢 = Transformer (𝑮) , (18)

where 𝜶̃1 =
[

𝛼̃11 , 𝛼̃
1
2 ,… , 𝛼̃1𝑛

]

∈ R𝑑 denotes the generated hard denoising
signal, and Reorganize (⋅) is a function to reorganize the sequence 𝑆 after
hard denoising.

After we obtain 𝒆̄𝑢, a Bayesian Personalized Ranking (BPR) loss
is utilized to maintain the reliability of the generated hard denoised
signals:

𝐵𝑃𝑅 = − 1
||

∑

(𝑢,𝑖,𝑗)∈
ln 𝜎

(

𝑟̂𝑢𝑖 − 𝑟̂𝑢𝑗
)

, (19)

here 𝑟̂𝑢𝑖 and 𝑟̂𝑢𝑗 are the vector inner-product of the positive sample
air

(

𝒆̄𝑢,𝒉𝑛+1
)

∈ + and the negative sample pair
(

𝒆̄𝑢,𝒉𝑗
)

∈ −,
respectively.  = {(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ +, (𝑢, 𝑗) ∈ −}. Since a user’s target
item is unique, thus the positive sample for the user is 𝒉𝑛+1, and the
randomly sampled negative sample for the user is 𝒉𝑗 .

4.4. Prediction

After applying soft and hard denoising, we obtain a relatively noise-
free representation of user interest 𝒆̂𝑢. Subsequently, within the entire
item set space  , we calculate the score between each item 𝑣𝑖 ∈  and
the user’s interest representation 𝒆̂𝑢, denoted as 𝑧𝑖, to recommend the
ext item. For each candidate item 𝑣𝑖, we can use the following formula
o quantify its relevance to the sequence:

𝑖 = 𝒆̂𝑢𝒉𝖳𝑣𝑖 , (20)

then the predicted probability distribution of the next item within the
entire item set space  can be calculated as follows:

𝑦̂𝑖 =
exp

(

𝑧𝑖
)

∑

𝑣𝑗∈ exp
(

𝑧𝑗
) . (21)

Subsequently, we define the sequence recommendation task by
minimizing the cross-entropy of the predicted results 𝑦̂𝑖:

𝑅𝑒𝑐 = −
||
∑

𝑖=1

(

𝑦𝑖 log
(

𝑦̂𝑖
)

+
(

1 − 𝑦𝑖
)

log
(

1 − 𝑦̂𝑖
))

, (22)
where 𝑦𝑖 denotes the 𝑖th one-hot encoding of the ground truth item.
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Fig. 3. S-shape curriculum learning vs. Linear shape curriculum learning.
Table 1
Statistics of the datasets.

Dataset #Sequence #Users #Items #Avg.length #Sparsity

ML-100k 99,287 944 1350 105.29 92.21%
Beauty 198,502 22,364 12,102 8.88 99.93%
Sports 296,337 35,599 18,358 8.32 99.95%
Yelp 316,354 30,432 20,034 10.40 99.95%
ML-1M 999,611 6041 3417 165.50 95.16%

Finally, we use an end-to-end approach to minimize all above loss
functions (i.e., Eqs. (16), (19), (22)) to achieve a high performance
sequential recommendation model:

Loss = 1
| |

| |

∑

𝑢=1

[

𝑅𝑒𝑐 + 𝜆
(

𝑆𝐶𝐿 + 𝐵𝑃𝑅
)]

+ 𝛽‖𝛩‖

2
2, (23)

where 𝜆 is a hyperparameter that balances the dual loss and the rec-
ommendation loss, 𝛽 is a hyperparameter used to solve the overfitting
problem of the model, and 𝛩 is the total parameter set of the model.

4.5. S-shape curriculum learning

To boost the performance of our model, we further introduce the
curriculum learning (Fu & Chen, 2023; Wang, Pan, et al., 2023; Xu,
Yuan, et al., 2024). To be specific, we start to train our model from
simple samples and gradually move to more difficult ones. According
to Zhang et al. (2022) and Wang et al. (2021), we rank the loss
values of all instances in the mini-batch in ascending order. Following
the 20/80 principle (Sun et al., 2020), we divide the mini-batch into
‘‘easy’’ instances (i.e., those with lower loss) and ‘‘difficult’’ instances
(i.e., those with higher loss), where ‘‘easy’’ instances and ‘‘difficult’’
instances accounting for 80% and 20%, respectively. During the cur-
riculum learning process, the training instances of the model include all
the ‘‘easy’’ instances together with the 𝜇 percent of ‘‘difficult’’ instances,
where 𝜇 gradually increases from 0, progressing with the iterations
until epoch 𝑇 reaches the limit 𝑀 . Both 𝑇 and 𝑀 are predefined
hyperparameters.

Existing curriculum learning methods usually assume the training
process of increasing ‘‘difficult’’ instances in curriculum learning fol-
lows a linear pattern. As depicted in Fig. 3(a), in these methods, the
‘‘difficult’’ instances are fed into model training with a linear shape
increment. However, different from them, we argue that increasing
‘‘difficult’’ instances should follow a S-shape increment, which is in-
spired by the learning pattern of human beings (Murre, 2014). As
shown in Fig. 3(c), the learning performance of human beings are lower
in the low-speed learning zone, but higher in the high-speed learning
zone. Inspired by this phenomenon, we employ fewer ‘‘difficult’’ in-
stances in the low-speed learning zones and more ‘‘difficult’’ instances
in the high-speed learning zone to accommodate different learning
stages. To be specific, we utilize a S-shape function (i.e., sigmoid
function) to simulate the augmentation process, as depicted in Fig. 3(b).
6 
5. Experiments

5.1. Experimental settings

5.1.1. Datasets
We conduct extensive experiments on five public benchmark datasets

to evaluate the performance of our model. Table 1 shows the statistics
of the datasets.

• MovieLens1: MovieLens is a widely used dataset in the task of
sequential recommendation. It contains both user ratings and
reviews for movies. In our experiments, we adopt the 100k and
1M versions (named ML-100k and ML-1M, respectively). Note
that the average sequence length of this dataset is relatively larger
than others.

• Amazon-Beauty and Sports2: The dataset contains user his-
torical purchases for a variety of products. Two representative
subcategories (i.e., Beauty and Sports) are leveraged in the ex-
periments. Different from MovieLens, users’ historical interaction
sequences in this dataset is relative short (e.g., 8.88 and 8.32
items on average for Beauty and Sports, respectively).

• Yelp3: Yelp is another widely used dataset for sequential rec-
ommendation, which records user reviews for various restau-
rants and bars. As the original dataset is large, we only extract
transaction records after 1 January 2019.

For all datasets, we keep users’ historical interaction sequences in
a chronological manner. Following (Zhang et al., 2022; Zhou et al.,
2022), we filter out inactive items with less than 5 interactions and
inactive users with less than 5 items. The maximum sequence length for
ML-1M is set to 200, and the others are set to 50. Finally, we employ the
leave-one-out strategy to split data into training, validation and testing
dataset.

5.1.2. Evaluation metrics
To evaluate the performance of all models, we employ a variety

of widely used evaluation metrics (Zhang et al., 2022; Zhou et al.,
2022), including Hit Ratio (HR@K), Normalized Discounted Cumulative
Gain (NDCG@K), and Mean Reciprocal Rank (MRR@K). To be specific,
we utilize HR@{5, 10, 20}, NDCG@{5, 10, 20} and MRR@{20} over
the entire item set space to avoid the bias introduced by the sampling
process (Cai, Wu, San, Wang, & Wang, 2021; Krichene & Rendle, 2020).

5.1.3. Competing models
To demonstrate the effectiveness of MSDCCL, we fuse it with six

base models of sequential recommendation, and compare them with
their counterparts. These base models are given as follows:

1 https://movielens.org/
2 http://jmcauley.ucsd.edu/data/amazon
3 https://www.yelp.com/dataset

https://movielens.org/
http://jmcauley.ucsd.edu/data/amazon
https://www.yelp.com/dataset
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Table 2
Performance comparison of different sequential recommendation methods with (w) or without (w/o) MSDCCL on the five datasets. The best score is in bold. All improvements are
statistically significant (i.e., two-sided t-tests with 𝑝 < 0.05).

Dataset Metric GRU4Rec NARM STAMP Caser SASRec CL4SRec BERT4Rec

w/o w w/o w w/o w w/o w w/o w w/o w w/o w

ML-100k

HR@5 0.0191 0.0723 0.0180 0.0756 0.0201 0.0546 0.0212 0.0594 0.0191 0.0682 0.0289 0.0437 0.0191 0.0708
HR@10 0.0286 0.1249 0.0403 0.1317 0.0392 0.0943 0.0339 0.1051 0.0371 0.1203 0.0579 0.0777 0.0414 0.1270
HR@20 0.0594 0.2169 0.0657 0.2202 0.0700 0.1702 0.0679 0.1916 0.0764 0.2123 0.1107 0.1404 0.0912 0.2126
NDCG@5 0.0104 0.0453 0.0132 0.0470 0.0115 0.0331 0.0113 0.0362 0.0114 0.0437 0.0174 0.0267 0.0117 0.0449
NDCG@10 0.0134 0.0621 0.0202 0.0650 0.0176 0.0459 0.0153 0.0509 0.0172 0.0603 0.0265 0.0378 0.0189 0.0631
NDCG@20 0.0212 0.0821 0.0267 0.0871 0.0253 0.0648 0.0238 0.0726 0.0270 0.0834 0.0398 0.0536 0.0315 0.0845
MRR@20 0.0109 0.0494 0.0162 0.0509 0.0132 0.0365 0.0119 0.0409 0.0139 0.0487 0.0209 0.0301 0.0157 0.0498

Beauty

HR@5 0.0077 0.0295 0.0120 0.0365 0.0080 0.0421 0.0072 0.0196 0.0242 0.0436 0.0208 0.0249 0.0060 0.0522
HR@10 0.0135 0.0481 0.0209 0.0565 0.0135 0.0638 0.0133 0.0340 0.0386 0.0632 0.0379 0.0434 0.0127 0.0714
HR@20 0.0256 0.0753 0.0367 0.0855 0.0231 0.0932 0.0235 0.0550 0.0561 0.0881 0.0618 0.0694 0.0204 0.0955
NDCG@5 0.0045 0.0194 0.0071 0.0243 0.0046 0.0285 0.0044 0.0120 0.0129 0.0307 0.0116 0.0156 0.0037 0.0378
NDCG@10 0.0064 0.0254 0.0099 0.0307 0.0064 0.0355 0.0064 0.0166 0.0175 0.0370 0.0171 0.0215 0.0059 0.0439
NDCG@20 0.0094 0.0322 0.0139 0.0380 0.0088 0.0429 0.0090 0.0219 0.0219 0.0434 0.0231 0.0280 0.0078 0.0500
MRR@20 0.0051 0.0204 0.0077 0.0249 0.0049 0.0289 0.0051 0.0128 0.0122 0.0307 0.0125 0.0167 0.0044 0.0372

Sports

HR@5 0.0064 0.0176 0.0099 0.0199 0.0071 0.0260 0.0069 0.0119 0.0113 0.0258 0.0150 0.0270 0.0055 0.0271
HR@10 0.0114 0.0293 0.0138 0.0327 0.0123 0.0413 0.0115 0.0199 0.0175 0.0377 0.0256 0.0422 0.0104 0.0387
HR@20 0.0183 0.0465 0.0223 0.0517 0.0182 0.0629 0.0178 0.0329 0.0268 0.0546 0.0418 0.0638 0.0167 0.0553
NDCG@5 0.0035 0.0115 0.0058 0.0127 0.0046 0.0169 0.0046 0.0078 0.0059 0.0183 0.0088 0.0177 0.0036 0.0192
NDCG@10 0.0051 0.0153 0.0073 0.0169 0.0062 0.0218 0.0061 0.0103 0.0079 0.0221 0.0122 0.0226 0.0051 0.0229
NDCG@20 0.0068 0.0196 0.0094 0.0216 0.0077 0.0272 0.0077 0.0136 0.0102 0.0264 0.0163 0.0280 0.0067 0.0271
MRR@20 0.0036 0.0122 0.0059 0.0134 0.0048 0.0174 0.0049 0.0083 0.0055 0.0185 0.0093 0.0182 0.0040 0.0192

Yelp

HR@5 0.0057 0.0215 0.0113 0.0248 0.0060 0.0234 0.0045 0.0224 0.0293 0.0212 0.0276 0.0307 0.0087 0.0243
HR@10 0.0102 0.0375 0.0187 0.0416 0.0099 0.0390 0.0084 0.0336 0.0352 0.0357 0.0425 0.0471 0.0159 0.0418
HR@20 0.0184 0.0631 0.0315 0.0686 0.0161 0.0645 0.0146 0.0517 0.0439 0.0584 0.0657 0.0711 0.0273 0.0695
NDCG@5 0.0034 0.0133 0.0075 0.0157 0.0038 0.0152 0.0028 0.0158 0.0251 0.0136 0.0185 0.0209 0.0054 0.0151
NDCG@10 0.0048 0.0184 0.0099 0.0211 0.0051 0.0202 0.0040 0.0194 0.0270 0.0183 0.0233 0.0261 0.0077 0.0207
NDCG@20 0.0068 0.0248 0.0131 0.0278 0.0066 0.0266 0.0055 0.0239 0.0292 0.0240 0.0291 0.0321 0.0105 0.0277
MRR@20 0.0037 0.0144 0.0081 0.0167 0.0040 0.0162 0.0031 0.0163 0.0250 0.0146 0.0191 0.0214 0.0060 0.0163

ML-1M

HR@5 0.0194 0.1689 0.0151 0.1676 0.0232 0.1464 0.0104 0.1394 0.0397 0.1455 0.0369 0.0754 0.0224 0.1351
HR@10 0.0373 0.2473 0.0349 0.2457 0.0440 0.2145 0.0215 0.2158 0.0666 0.2251 0.0684 0.1294 0.0495 0.2095
HR@20 0.0690 0.3445 0.0591 0.3430 0.0677 0.3010 0.0589 0.3173 0.1007 0.3260 0.1204 0.2064 0.0980 0.3062
NDCG@5 0.0135 0.1139 0.0080 0.1124 0.0150 0.0993 0.0063 0.0899 0.0207 0.0936 0.0216 0.0471 0.0132 0.0873
NDCG@10 0.0190 0.1392 0.0144 0.1376 0.0218 0.1212 0.0099 0.1145 0.0294 0.1192 0.0317 0.0644 0.0218 0.1112
NDCG@20 0.0270 0.1636 0.0205 0.1621 0.0278 0.1430 0.0194 0.1401 0.0379 0.1447 0.0447 0.0837 0.0339 0.1356
MRR@20 0.0159 0.1129 0.0100 0.1113 0.0168 0.0988 0.0091 0.0908 0.0203 0.0940 0.0243 0.0501 0.0169 0.0881
W

• GRU4Rec (Hidasi et al., 2016). This method applies the gated re-
current unit (GRU) to model sequential data for recommendation.
It modified the original GRU by introducing a tailored ranking
loss function and session-parallel mini-batches.

• NARM (Li et al., 2017). It utilizes a hybrid encoder to capture the
sequential behavior and the main purpose of a user in the current
sequence. In addition, a bi-linear matching module is introduced
to obtain recommendation scores.

• STAMP (Liu et al., 2018). This method proposes to capture both
users’ general interests and current interests. It leverages the long-
term memory of the whole session as the general interests, and the
short-term memory of the last-clicks as the current interests.

• CASER (Tang & Wang, 2018). It employs convolutional operation
to capture sequential patterns and models users’ recent items from
both time and latent dimensions.

• SASRec (Kang & McAuley, 2018). It proposes a self-attention
based sequential recommendation method, which utilizes self-
attention mechanism to simultaneously capture both long-term
semantics as well as a few important recent items.

• CL4SRec (Xie et al., 2022). It is a contrastive learning based
sequential recommender which attempts to learn better sequence
representations by leveraging the contrastive learning framework
to obtain self-supervision signals.

• BERT4Rec (Sun et al., 2019). This method applies the deep
bidirectional self-attention to model user behavior sequence, and
utilizes the Cloze task as the objective in sequential recommen-
dation.
 v

7 
In addition, we also compare the performance of our fused model
(i.e., MSDCCL+BEAT4Rec) with the following state-of-the-art denoising
models, including:

• DSAN (Yuan et al., 2021). It learns target embedding by explor-
ing item-level interaction and correlation within a session. In
addition, an adaptively sparse attention is used to mitigate the
influence of irrelevant items.

• FMLP-Rec (Zhou et al., 2022). To obtain more robust sequence
representations, it utilizes the fast fourier transform (FFT)
(Gonzalez-Toral, Reviriego, Maestro, & Gao, 2018) and its in-
verse transform process to attenuate the effect of noise within a
sequence.

• HSD+BERT4Rec (Zhang et al., 2022). It removes the noisy items
in the original sequence by generating sequence-level and user-
level signals, and learns better sequence representations by using
the reassembled sequence.

• AC-BERT4Rec (Zhou et al., 2023). This model introduces a novel
spatial calibrator and an adversarial calibrator to capture spatial
relationships between items and redistribute attention weights
based on the contributions of different items to predict the next
item. In this model, we take BEAT4Rec as the backbone.

5.1.4. Implementation details
Similar to previous models (Yuan et al., 2021; Zhang et al., 2022),

we set the embedding and mini-batch sizes for all models to 100 and
256, respectively. The learning rate of Adam optimizer is set to 10−3.

e tune the regularization hyperparameter 𝛽 in {0, 10−3, 10−4} on the
alidation set. The initial temperature parameter 𝜏 in the cross-signal
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Table 3
Performance comparison between MSDCCL with the best base model (i.e., BERT4Rec) and the state-of-the-art denoising methods on the five datasets. The best score and the second
best score in each column are in bold and underlined, respectively. OOM: Out of memory on 24GB DGX.

Dataset Model HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 MRR@20

ML-100k

DSAN (AAAI’21) 0.0201 0.0435 0.0700 0.0115 0.0188 0.0254 0.0133
FMLP-Rec (WWW’22) 0.0170 0.0477 0.0764 0.0117 0.0216 0.0288 0.0160
HSD+BERT4Rec (CIKM’22) 0.0339 0.0732 0.1294 0.0178 0.0305 0.0447 0.0218
AC-BERT4Rec (CIKM’23) 0.0212 0.0445 0.0877 0.0113 0.0188 0.0320 0.0147
MSDCCL+BERT4Rec 0.0708* 0.1270* 0.2126* 0.0449* 0.0631* 0.0845* 0.0498*

Beauty

DSAN (AAAI’21) 0.0092 0.0152 0.0264 0.0058 0.0077 0.0105 0.0062
FMLP-Rec (WWW’22) 0.0095 0.0166 0.0284 0.0056 0.0078 0.0107 0.0060
HSD+BERT4Rec (CIKM’22) 0.0261 0.0447 0.0683 0.0147 0.0207 0.0266 0.0151
AC-BERT4Rec (CIKM’23) 0.0200 0.0371 0.0609 0.0120 0.0175 0.0235 0.0133
MSDCCL+BERT4Rec 0.0522* 0.0714* 0.0955* 0.0378* 0.0439* 0.0500* 0.0372*

Sports

DSAN (AAAI’21) 0.0061 0.0105 0.0215 0.0042 0.0056 0.0084 0.0049
FMLP-Rec (WWW’22) 0.0068 0.0117 0.0180 0.0044 0.0059 0.0075 0.0046
HSD+BERT4Rec (CIKM’22) 0.0120 0.0190 0.0303 0.0078 0.0100 0.0129 0.0081
AC-BERT4Rec (CIKM’23) 0.0112 0.0203 0.0351 0.0069 0.0099 0.0136 0.0077
MSDCCL+BERT4Rec 0.0271* 0.0387* 0.0553* 0.0192* 0.0229* 0.0271* 0.0192*

Yelp

DSAN (AAAI’21) 0.0269 0.0369 0.0541 0.0211 0.0242 0.0285 0.0216
FMLP-Rec (WWW’22) 0.0203 0.0294 0.0436 0.0142 0.0171 0.0207 0.0144
HSD+BERT4Rec (CIKM’22) 0.0292* 0.0408 0.0593 0.0223* 0.0260* 0.0307 0.0228*
AC-BERT4Rec (CIKM’23) 0.0286 0.0445* 0.0700* 0.0194 0.0245 0.0309* 0.0202
MSDCCL+BERT4Rec 0.0243 0.0418 0.0695 0.0151 0.0207 0.0277 0.0163

ML-1M

DSAN (AAAI’21) 0.0098 0.0336 0.0651 0.0048 0.0122 0.0200 0.0081
FMLP-Rec (WWW’22) 0.0210 0.0449 0.0707 0.0120 0.0199 0.0263 0.0142
HSD+BERT4Rec (CIKM’22) 0.0477 0.0886 0.1399 0.0297 0.0429 0.0558 0.0328
AC-BERT4Rec (CIKM’23) OOM OOM OOM OOM OOM OOM OOM
MSDCCL+BERT4Rec 0.1351* 0.2095* 0.3062* 0.0873* 0.1112* 0.1356* 0.0881*

* Denotes statistically significant improvement (measured by a two-sided t-test with 𝑝 < 0.05) over the best baseline.
.

contrastive learning module is set to 0.5, which is annealed after every
40 batches. All embedding parameters are initialized with a Gaussian
distribution. For all baseline methods, we either report their perfor-
mances in the original papers or optimally tuned on the validation
data. The early-stopping training strategy is employed to prevent model
overfitting, which stops training when the HR@20 metric decreases
continuously over 10 epochs on the validation dataset.

5.2. Overall performance comparison

The results of different models on datasets are shown in Tables 2
and 3. The best results are in bold and the second best results are
underlined. We conduct the two-sided t-test with 𝑝 < 0.05 to verify
the statistical significance for the performance improvement. From the
experimental results, we draw the following conclusions:

• Table 2 shows the performance of different sequential recommen-
dation methods with or without our proposed MSDCCL approach
over all datasets. We observe that the base models fused with
MSDCCL yield significant improvements in most cases when com-
paring with their counterparts. The results verify the effectiveness
of our proposed method which can extract better user preferences
together with alleviating the noise issue. To be specific, the
relative improvements of MSDCCL+BERT4Rec over BERT4Rec in
terms of the metrics HR@20, NDCG@20, MRR@20 are 133.11%,
168.25%, 217.20% respectively on the dataset ML-100k. Similar
relative improvements can also be observed on other datasets.

• Table 3 reports the performance comparison of all denoising
approaches on all five datasets. We can see that on the ML-100k,
Beauty, Sports and ML-1M datasets, the performance of MSD-
CCL+BERT4Rec, which employs both the soft and hard denoising
strategy, consistently outperforms other denoising models relying
solely on the soft denoising strategy (e.g., DSAN, FMLP-Rec and
AC-BERT4Rec) or hard denoising strategy (e.g., HSD+BEART4Rec)
It is worth noting that the performance of MSDCCL+BERT4Rec
is suboptimal on the Yelp dataset. This may be due to the fact
that the denoising signals produced by MSDCCL are more difficult
to fuse with BERT4Rec than the denoising signals produced by
8 
Table 4
Ablation study of our model, we report HR@20, NDCG@20 and MRR@20 on five
datasets. The best results are highlighted in bold, and the second best results are
underlined.

Dataset Metric Full w/o DL w/o TS w/o BPR w/o CL

ML-100k
HR@20 0.2126 0.1783 0.2054 0.1991 0.2079
NDCG@20 0.0845 0.0678 0.0823 0.0793 0.0826
MRR@20 0.0498 0.0380 0.0489 0.0468 0.0486

Beauty
HR@20 0.0955 0.0639 0.0957 0.0937 0.0945
NDCG@20 0.0500 0.0279 0.0500 0.0491 0.0492
MRR@20 0.0372 0.0180 0.0371 0.0365 0.0364

Sports
HR@20 0.0553 0.0461 0.0548 0.0550 0.0550
NDCG@20 0.0271 0.0193 0.0264 0.0268 0.0267
MRR@20 0.0192 0.0120 0.0185 0.0191 0.0188

Yelp
HR@20 0.0695 0.0689 0.0687 0.0689 0.0671
NDCG@20 0.0277 0.0276 0.0274 0.0273 0.0267
MRR@20 0.0163 0.0163 0.0162 0.0160 0.0157

ML-1M
HR@20 0.3062 0.2826 0.3033 0.3034 0.3031
NDCG@20 0.1356 0.1249 0.1337 0.1346 0.1336
MRR@20 0.0881 0.0811 0.0866 0.0877 0.0864

other models on certain datasets. In summary, these experimental
results demonstrate the superiority of our denoising model over
other sequence denoising recommendation models in most cases.

5.3. Ablation study

To investigate the role of each component in our proposed MSDCCL,
we perform an ablation study by removing each component from the
entire model for comparison. Note that we utilize BERT4Rec as the
backbone for all variants. To be specific, we consider the following
variants of our method:

• w/o DL: It discards the Dual Loss with Hard Signal Denoising
module, which is developed to explicitly eliminate noisy items
from the original sequence with hard signals.

• w/o TS: It denotes the variant which drops the target signal from

the Target-Aware User Interest Extractor module.
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Fig. 4. Analysis on the effectiveness of different increment patterns in curriculum learning, specifically linear shape versus S-shape.
• w/o BPR: This variant ignores the supervised loss (i.e., BPR loss)
in the Dual Loss with Hard Signal Denoising module.

• w/o CL: It removes the curriculum learning module from our
model, which indicates that the model will be trained without
considering the difficulty of samples.

• Full: This model indicates our full model without dropping any
component.

As shown in Table 4, we observe that discarding each component
of our model MSDCCL will lead to a performance drop in most cases.
Specifically, removing the Dual Loss with Hard Signal Denoising mod-
ule (i.e., w/o DL) will cause a considerable performance decline on all
datasets. Compared to MSDCCL, the relative performance decrements
of w/o DL are 16.13%, 19.76%, 23.69% in terms of the metrics HR@20,
NDCG@20, MRR@20 on the dataset ML-100k. Similar results can be
observed on the other datasets. This reveals that the Dual Loss with
Hard Signal Denoising module is indeed critical for alleviating the
impact of noisy items. Besides, removing the target signal from the
Target-Aware User Interest Extractor module (i.e., w/o TS) will also
result in an inferior performance, which demonstrates the usefulness
of taking the target signal for learning better representations of users.
It is interesting to notice that when we remove the supervised loss in
the Dual Loss with Hard Signal Denoising module (i.e., w/o BPR), the
drop of the performance is less than that of w/o DL. This indicates
that both unsupervised loss (i.e., cross-signal contrastive learning loss)
and supervised loss (i.e., BPR loss) are necessary in our model. At last,
if we exclude the curriculum learning module, the performance will
decrease consistently, which indicates the importance of incorporating
the extended curriculum learning in our proposed model.

5.4. Effect of S-shape curriculum learning

In this section, we further investigate the effectiveness of devel-
oping the S-shape curriculum learning. To the end, we compare the
performance of two different increment strategies of training sam-
ples (i.e., linear shape increment and S-shape increment) during the
curriculum learning process. From Fig. 4, we can see that MSDCCL
equipped with S-shape increment performs better than its counterpart
equipped with linear increment. This indicates that aligning the incre-
ment of training samples with the learning pattern of human beings can
provide better learning capacity of curriculum learning in sequential
recommendation.
9 
5.5. Comparison with different sequence length

The sequence length reflects the sparsity of user interaction behav-
iors. To evaluate the performance of our model trained with different
sequence lengths, we evenly split sequences of a dataset (e.g., ML-
100k and Beauty) into three groups (i.e., short, medium and long)
based on their lengths. We compare the performance of our model
with the two best performing baselines, including AC-BERT4Rec and
HSD+BERT4Rec. According to the results demonstrated in Fig. 5, we
see that AC-BERT4Rec obtains superior performance on short sequences
as compared with that on both medium and long sequences. This is
because these medium and long sequences would contain more noisy
items, and AC-BERT4Rec shows inferior results due to the assignment
of attention weights to them. On the contrary, the performance of
HSD+BERT4Rec on long sequences is much higher than that on both
short and medium sequences. This is due to that HSD+BERT4Rec
takes a hard denoising strategy which directly discards noisy items in
sequences. Since there is no supervised signal for sequence denoising,
this method would inevitably overlook relevant items and the prob-
lem becomes more serious when the sequence is short. Our model is
consistently superior to both AC-BERT4Rec and HSD+BERT4Rec on all
three groups. The main reason is that our model can make full use of
advantages of both soft and hard denoising strategies where each of
them is leveraged to guide the learning process of each other.

5.6. Impact of training set proportion

To investigate the effectiveness of our proposed model with dif-
ferent training set ratios, we compare the performance of our model
with the best performing baseline HSD+BERT4Rec on the dataset ML-
100k and Beauty. Fig. 6 shows the results when we vary the training
set proportion from 20% to 100% with a step size of 20%. It can
be seen from the results that the performance of both methods in-
crease gradually with the growth of training data. In addition, our
model significantly outperforms HSD+BERT4Rec under all training set
ratios, which demonstrates the effectiveness of our model in real-world
applications.

5.7. Impact of the Gumbel-softmax strategy

To validate the effectiveness of incorporating the Gumbel-softmax
strategy in our proposed method, we replace it with a simple clipping



X. Zhu et al. Neural Networks 179 (2024) 106480 
Fig. 5. Performance of our model and the two best performing baselines (i.e., AC-BERT4Rec, HSD+BERT4Rec) under different sequence lengths on ML-100k and Beauty.
Fig. 6. Performance of our model and the best performing baseline HSD+BERT4Rec with different training set proportion on ML-100k and Beauty.
Fig. 7. Performance Comparison of our model with the Gumbel-softmax strategy and the clipping strategy on the ML-100k dataset.
Fig. 8. A case study on Sports to demonstrate the effectiveness of our model.
10 
strategy. We vary the value of the clipping threshold from 0.1 to 0.9
with a step size of 0.1, and the performance on the ML-100k dataset
is demonstrated in Fig. 7. We can observe that the model performance
with the clipping strategy improves if a higher threshold value is used
and reaches a peak when the threshold value is 0.2. Then the perfor-
mance starts to drop continuously as the threshold value increases. In
addition, we can clearly observe that the model performance with the
Gumbel-softmax strategy is consistently superior to that of the clipping
strategy, which suggests that it is beneficial to employ the Gumbel-
softmax strategy in our proposed method. This is probably because
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Fig. 9. Performance (HR@20, NDCG@20 and MRR@20) comparison w.r.t hyperparameters 𝑚 on five datasets.
Fig. 10. Performance (HR@20, NDCG@20 and MRR@20) comparison w.r.t hyperparameters 𝜆 on five datasets.
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he clipping strategy always obtain the same output while the Gumbel-
oftmax strategy might get probability output due to the incorporation
f the Gumbel noise.

.8. Case study

We further conduct a case study to investigate the advantages of
SDCCL in comparison other denoising models (i.e., soft and hard

enoising methods). Fig. 8 shows a historical interaction sequence (in
he blue dotted box) and the target item (in the red dotted box) of an
ndoor sport enthusiast. Among all methods, only the proposed method
akes the correct recommendation. The main reason is that solely

mploying the soft denoising strategy (e.g., AC-BERT4Rec) would still
ssign low attention weights to noise items such as ‘‘gun’’ and thus
ffect the recommending performance. In contrast, utilizing the hard
enoising strategy (e.g., HSD+BERT4Rec) would discard informative
nformation due to the lack of supervised signal for sequence denoising.
ifferent from these methods, our model can comprehensively lever-
ge the advantages of both soft and hard denoising strategies, thus
ffectively boosting the capability of sequence denoising and accurately

apturing user intent for recommendation.
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.9. Hyperparameter sensitivity

In this section, we investigate the impact of hyperparameters in
SDCCL. We first explore the effect of 𝑚, which plays a critical role

n modeling short user interests. Then, we analyze the impact of 𝜆
hich is introduced to balance the importance between the dual loss
ith hard signal denoising and the recommendation loss. To ensure the
xperiment is controlled, we change one hyperparameter at one time,
hile fixing other hyperparameters.

• Impact of the parameter 𝑚. The parameter 𝑚 indicates the
number of items that are truncated from the end of the sequence.
To exploit the impact of the parameter 𝑚, we vary it in the range
of {1, 2, 3, 4, 5, 6} and the performance of MSDCCL is shown in
Fig. 9. It can be observed that on all datasets except Yelp, the
model’s performance improves with increasing value of 𝑚 and
reaches a peak when 𝑚 equals to 2 or 3. This phenomenon occurs
because the truncated subsequence contains more enriched short-
term interest information of the user compared to the last item in
the sequence. If we continue to raise the value of 𝑚, the perfor-
mance will start to drop. The reason is that when 𝑚 becomes too
large, more outdated items will be considered to represent user
preference, which will inevitably leads to inferior performance.
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On the Yelp dataset, we observe fluctuations in the model’s
performance as 𝑚 increases. This variability may be due to the
presence of noise (i.e., misclicks, malicious false interactions)
within the truncated subsequence or sudden shifts in the user’s
short-term interests, resulting in a suboptimal representation of
the user’s short-term preferences.

• Impact of the parameter 𝜆. We investigate the effect of the
hyperparameter 𝜆 in Eq. (23), and vary it from 0.2 to 2 with a
step size of 0.2. The results are reported in Fig. 10. It can be
observed that for all datasets, there is a general decrease in model
performance with the increasing value of 𝜆. This observation
highlights that it will degrade the performance of sequential
recommendations when the Dual Loss with Hard Signal Denoising
module takes too much weights in the learning process. It is also
worth noting that if we set 𝜆 to 0, which is equivalent to discard
the Dual Loss with Hard Signal Denoising module from MSDCCL,
the performance will drop significantly.

. Conclusion

In this paper, we propose a novel denoising framework MSDCCL for
equential recommendation. To be specific, we first employ both the
oft and hard denoising strategy to alleviate the influence of noisy items
n sequences. Then, we capture both user long-term and short-term
nterest via developing a target-aware user interest extractor. Next, we
xtend existing curriculum learning by simulating the learning pattern
f human beings by utilizing the S-shape increment rather than the
onventional linear increment. Extensive experiments on five widely
sed datasets are leveraged for evaluating the performance of the pro-
osed approach. The results show that MSDCCL can significantly boost
he performance of existing mainstream sequential recommendation
ethods. In addition, MSDCCL is also superior to all state-of-the-art
enoising models. For future work, we will propose to employ data aug-
entation for addressing the denoising issue. To the end, we introduce

n auxiliary task which can provide explicit noisy signals for learning
obust denoising models. In addition, we also attempt to investigate
ther patterns, instead of S-shape increment, for increasing ‘‘difficult’’
nstances in curriculum learning.
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